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Abstract 

It has long been known that there exists an infinite 
number of types of tile-transitive periodic three- 
dimensional tilings. Here, it is shown that, by con- 
trast, the number of types of face-transitive periodic 
three-dimensional tilings is finite. The method of 
Delaney symbols and the properties of the 219 
isomorphism classes of crystallographic space groups 
are used to find exactly 88 equivariant types that fall 
into seven topological families. 

O. Introduction 

Consider the three-dimensional Euclidean space ~3. 
A point-set P C~  3, together with a finite family F(P) 
of faces f C P, is called a topological polyhedron if it 
satisfies the following conditions: 

(P1) the set P is homeomorphic to the unit ball 
= {x  3llx I ~ 1}; 

(P2) the union of faces covers the boundary of P, 
i.e. Uf~F(t ,)f= OP; 

(P3) each face f~F(P)  is homeomorphic to the 
disc D: = {x e  =llxl-< 1}; 

(P4) the intersection of any number of distinct 
faces is either empty, a point (called a vertex) or an 
arc (called an edge), that is, homeomorphic to the 
interval I: = {x ~  llxl-< 1}; 

(P5) each face contains at least three vertices. 
Note that it follows from these conditions that - 

dually to (P5) - each vertex is contained in at least 
three edges. 
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A system ,J-= {PbP2,P3, ...} of topological polyhe- 
dra (called tiles) is called a (face-to-face) tiling of ~3, 
or three-dimensional tiling, if it satisfies the following 
conditions: 

(T1) the tiling covers space, i.e. U ~ ,-P = ~3.  

(72) the intersection of any two distinct tiles P and 
P '  is either empty, a common vertex, a common edge 
or a common face. The tiles, faces, edges and vertices 
associated with ,¢-are called the constituents of .J-(of 
dimension 3, 2, 1 and 0, respectively). 

A three-dimensional tiling J is called periodic if 
there exists a discrete group F of isometries of E 3, 
containing three linearly independent translations, 
i.e. a crystallographic space group, such that 

.s-=y,c-:={yP[PE.~-} for all y ~ F  (with yP:= 
{ y p p ~  P}, of course) and F(yP)= yF(P) for all 
P E ,¢-and  y ~ F. In this case, the pair (y-,F) is an 
equivariant tiling as defined by Dress (1984, 1987). 

More specifically, i f -  as above - . 7  is a three- 
dimensional tiling and if F is a crystallographic 
group, then we call the pair (t-,F) an equivariant 
three-dimensional tiling.$ Two equivariant three- 
dimensional tilings (~,F) and (.7-',F') are called 
topologically equivalent (or are described as being in 
the same topological family) if there exists a homeo- 
morphism ~0:~3.__,~3 that maps the tiles of one tiling 
onto the tiles of the other, i.e. if ~o./-=.T'. If, addi- 
tionally, F '  = ~oF~o-~ holds, then the two are called 
equivariantly equivalent. 

:1: Even more specifically, such a pair should be called an equi- 
variant Euclidean three-dimensional tiling, where the term 
Euclidean indicates that the group F is supposed to consist of 
isometrics with respect to the Euclidean metric of ~3 (as opposed 
to arbitrary groups of homeomorphisms of ~3). 
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Note that, according to our definition, the symme- 
try group F is not necessarily identical with the full 
group of isometrics of E 3 that map the tiling onto 
itself. If one wants the two to coincide, then this can 
always be achieved by allowing the tiles to carry 
additional structure, for example, the so-called 
'marks', that breaks superfluous symmetries [see 
Griinbaum & Shephard (1987, p. 269)]. 'Equi- 
variantly equivalent' tilings are sometimes also called 
homeomeric or, more precisely, marked-homeomeric 
[see Griinbaum & Shephard (1981 b)]. 

Let (~,/-) be an equivariant three-dimensional 
tiling. Two tiles P,P' E ~  are called equivalent (or 
F-equivalent) if there exists a symmetry y ~ F with P 
= yP'. The equivalence of faces, edges and vertices 
of tiles is defined in the same way. An equivariant 
three-dimensional tiling (7,F) is called tile-, face-, 
edge- or vertex-transitive if all its tiles, faces, edges or 
vertices, respectively, are equivalent. If the number of 
equivalence classes is k E ~, then the tiling is also 
called tile-, face-, edge- or vertex-k-transitive. 

A simple construction (see Heesch, 1934) shows 
that the number of equivariant classes of tile- 
transitive three-dimensional tilings is infinite. In this 
paper, we show that, by contrast, there exist only 88 
equivariant classes of face-transitive three- 
dimensional tilings. These tilings fall into seven 
topological families: the cube (or rhombohedron), 
tetrahedron (or, rather, sphenoid), rhombic 
dodecahedron, octahedron (or, rather, dipyramid), 
special rhombohedron, covered rhombohedron and 
octahedron-tetrahedron tilings (see §4). 

In § 1 of this paper, we introduce the main tool 
used in our investigations, the theory of Delaney 
symbols, applied here to periodic three-dimensional 
tilings. §2 contains the proof of the fact that the 
number of equivariant types of face-transitive three- 
dimensional tilings is finite. We then discuss, in §3, 
how to generate by computer, and then single out 'by 
hand', the 88 classes mentioned above. Finally, in §4, 
we briefly discuss the results and some examples. 

Our approach can be used to classify the face- 
transitive three-dimensional tilings of all eight 
three-dimensional geometries, discussed by Thurston 
(1980) and Scott (1983). Let us also remark that the 
classification of edge-transitive Euclidean three- 
dimensional tilings can easily be obtained by dualiz- 
ing the 88 face-transitive tilings. This will be dis- 
cussed in a future paper. 

1. Delaney symbols 

The following method of 'encoding' periodic tilings 
in the forms of certain colored graphs called Delaney 
symbols was inspired by Delaney (1980), suggested 
and introduced by Dress (1984), first applied by 

Dress & Scharlau (1984) and worked out in more 
detail in a number of papers including those of Dress 
(1987) and Dress & Huson (1987). Based on the 
theory of Delaney symbols, several computer pro- 
grams have been developed to solve classification 
problems in tiling theory [see Delgado Friedrichs, 
Huson & Zamorzaeva (1992), Franz & Huson (1992) 
and Huson (1993)]. 

To start with, let (T,F) be an equivariant three- 
dimensional tiling (see Fig. 1) and consider the set of 
(maximal) flags associated with .T, that is, the set J :  
= J ( J ) :  = {(V,E,F,P)IV~ EC FC P} consisting of 
all chains of incident vertices, edges, faces and tiles 
associated with the tiling .7. The set J can be geo- 
metrically interpreted in terms of a chamber system 
(or formal barycentric subdivision) ~: = ~ ~, which can 
be obtained in the following way [see Dress (1984), 
Dress (1987) or Dress & Huson (1987) for details]. 
For each vertex, edge, face or tile associated with 7 ,  
choose an interior point, called a 0, 1, 2 or 3 center, 
respectively. Now, every flag (V,E,F,P)EJ defines a 
topological simplex C: = C(V ,E ,F ,P)~  (called a 
chamber); its vertices being given by the 0, 1, 2 and 3 
centers of Is, E, F and P, respectively. See Fig. 2. 

Note also that, for every i center in a chamber 
C E ~, there is precisely one face of C that is oppo- 
site to this center, which will be called the i face of C. 
Furthermore, for every chamber C ~ ' f  and any i in 
{0,1,2,3}, there exists exactly one chamber C' E ~" 
(with C';~ C) such that C and C' have the same 

Fig. 1. The most well known face-transitive tiling of Euclidean 
space is the tiling by cubes. 

Fig. 2. A chamber C of the cube tiling. The labeled circles indicate 
the 0, 1, 2 and 3 centers associated with C. Each cube consists of 
48 such chambers. 
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i face. We say that  C and C '  are i neighbors and we 
define a permuta t ion  s;  ~ - - - ~  that  maps every C 

~ onto  its i neighbor C ' =  "s,(C) (see Fig. 3) [So 
C ' =  s,(C) implies C = s~(C').] In terms of  flags, this 
means  that  for any flag (V,E,F,P) E Jr and any i in 
{0,1,2,3} there exists precisely one flag (V' ,E ' ,F ' ,P ' )  
= s,(V,E,F,P) in ~r that  differs f rom (V,E,F,P) pre- 
cisely in i t s / -d imensional  constituent.  

The natura l  way to let the symmetry  group F 
operate on the flag structure of  the tiling and, thus, 
also on its chamber  system, is to define 

y( V,E,F,P): = (~, V, y E, y F, y P) 

for any isometry 3~ ~ F and any flag (V ,E ,F ,P)~J .  
Hence, we can call two chambers  C, C' E ~ equiva- 
lent whenever there exists a symmetry  ~/E F with ~ C 
= C'. As we assume that  J - i s  periodic, it follows 
that  the set of  all equivalence classes or F orbits 

rc{ clw r}(c  ) 
in ~ is finite. This set is called the Delaney set 
associated with (~,F)  and is denoted-~"  = 2 ~ , - r ) =  
F/~. In §2, we show that  face-transitivity alone 
implies the finiteness o f ~ ,  even if periodicity of  the 
tiling is not  assumed. 

Consider ~.  Any  symmetry  y ~ F necessarily maps 
i neighbors onto i neighbors, so the operat ion of  s~ 
commutes  with F on ~ ,  for any i E {0,1,2,3}. Thus,  
we can introduce the concept of  i adjacency of  whole 
F orbits. The permuta t ion  s~: _~---,~ maps every 
D E_~ onto its i neighbor D ' =  :s,(D), with i in 
{0,1,2,3}. 

The Delaney set_~ defines a finite connected four- 
colored graph with vertex set ,~ and set of  colored 
edges 

~ ' =  {({D,D'}, i) ]D,D' ~ .~ and [s,(D) = D'}, 

where the component  i ~{0,1,2,3} of  an edge 
({D,D'},i) is called its color. This Delaney graph (.~ ~) 
makes up the first par t  of  the Delaney symbol  corre- 
sponding to (~7 F). 

3 

Fig. 3. The chamber C, depicted together with its 0 neighbor So (C) 
and its three-neighbor s3 (C). 

The Delaney graph on its own does not  hold 
enough informat ion to describe a tiling completely 
and uniquely (up to homeomerism).  We need to 
introduce the following functions defined on the 
vertices of  the Delaney graph: for 0_< i<_j<_ 3, let m// 

_~---N be defined as 

mu(D): = min{m E Hl(sisj)" (C) = C for any C E D}. 

These functions all have simple geometric interpreta- 
tions (see Fig. 4). 

We now come to the formal definition of  a 
Delaney symbol.  A (three-dimensional) Delaney 
symbol is a system @;m) consisting of  a finite con- 
nected Delaney graph ~ ,  ~) and functions m / / g - - ,  N, 
with 0 _< i < j  < 3, such that,  for every D E 2  and i, j 
as above, the following condit ions hold true (see 
Figs. 4 and 5): 

(DS1) mo(D ) = mo[s,(D)] = mo[sj(D)]; 
(DS2) (sisj) m'~(D) (D)= (sjsi) mij(D) (D)= D; 
(DS3) moz(D) = m03(D) = m13(D) = 2; 
(DS4) tool(D) -> 3, m12(O) -> 3 and m23(D) > 3. 
Two Delaney symbols @ ;m) and (_9 ';m') are called 

isomorphic if and only if # 2 = # _9' (where #_9.. 
denotes the cardinali ty of  the set .9.. ) and there exists 
a map zr: .~---_~'  with Sk[Zr(D)]= zr[sk(D)] and 
mb [z r (D) ]=mu(D ) for all D ~ _ 9 ,  0_<k_<3 and 
0 _< i < j _< 3. The two symbols are called homo- 
morphic if they fulfill the latter condit ion and #_9 _> 
#_~ '. It is possible to prove the following result (see 
Dress, 1984, 1987): 

Lemma 1.1. Two three-dimensional tilings (T,F) 
and ( ~ ' , F ' )  are equivariantly equivalent if and only 
if the corresponding Delaney symbols ~ ; m )  and 
(~ ' ;m')  are isomorphic.  Similarly, the tilings are 

/ 

hsdC) 

Fig. 4. Here we depict all eight chambers lying on one side of a 
face of a tile of the cube tiling. Note that, starting from any of 
the depicted chambers, say C, in this example, we need to apply 
StSo precisely four times to arrive back at C for the first time. 
This is exactly how mot is defined and, obviously, this number 
counts the number of edges of the face that is incident to the 
chambers C, so(C), st[so(C)] . . . . . . . . .  A similar discussion shows 
that mr2 counts the number of edges of a given tile that are 
incident to a given vertex and that m23 counts the number of 
files that surround a given edge. It is also not difficult to show 
that the functions too2, mo3 and mr3 are always constant and 
equal to two. 
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topologically equivalent if and only if the two sym- 
bols are homomorphic to each other or to a third 
symbol. 

We call a Delaney symbol @;m) minimal if no 
homomorphic Delaney symbol exists whose Delaney 
set has smaller cardinality. Note that every topologi- 
cal family of tilings gives rise to precisely one (up to 
isomorphism unique) minimal Delaney symbol. This 
Delaney symbol corresponds to the so-called maxi- 
mal tiling [~,F = Aut (J)] in the topological family. 
This is the tiling for which the group F is maximal, 
i.e. isomorphic to the full automorphism group 
Aut (7) of the incidence structure of J-; that is, the 
group of all permutations of ~,- that  commute with 
So, s~, s2 and s3. 

Let (_~ ;m) be the Delaney symbol of some equiva- 
riant three-dimensional tiling (J-,F). For any subset 
of colors I C  {0,1,2,3}, define the I subgraph ~,~el) of 
(2, ~) as the graph that one obtains by deleting all 
edges whose colors are not contained in L Call the 
connected components of ~ ,  g~z) the I components of 
@, g~). (These definitions also apply to any chamber 
system ~.) The system consisting of an I component 

_~' and all functions mij, with i < j and i,j ~ L restric- 
ted to _~ ', is called an I subsymbol, where I C 
{0,1,2,3}. There is a simple relationship between cer- 
tain subsymbols of @ ;m) and the different consti- 
tuents of the tiling (.~,F): 

Lemma 1.2. Let (~,F) be an equivariant three- 
dimensional tiling and let (2 ;m) be the corresponding 
Delaney symbol. There exists a one-to-one corre- 
spondence between the F-equivalence classes of ver- 
tices, edges, faces and tiles of (~,F), on the one hand, 
and the {1,2,3}, {0,2,3}, {0,1,3} and {0,1,2} subsymbols 
of (~ ;m) on the other. 

0 

Fig. 5. Here, we depict the Delaney symbol of the tiling ( J , F )  
indicated in Fig. 1. We are assuming that the syummetry group 
F consists only of all orientation-preserving symmetries of.f,  i.e. 
that F is of type 207. P432. In this case, the tiling (.~F) gives 
rise to precisely two F-equivalence classes .~ and ~ of cham- 
bers. Hence, the Delaney graph of the tiling has precisely two 
vertices, which we depict as two circles labeled A and B. Note 
that any chamber of classy/is surrounded by chambers of class 

.~ and vice versa. In other words, we have s~(A) = B for all i 
~{0,1,2,3}. The operation of sj is depicted as a line labeled i. 
Both vertices of the Delaney graph are also labeled with the 
values of mo=, m~2 and m23. In both cases, the values are four 
(each face has four edges), three (every vertex is incident to 
precisely three edges of a given tile) and four (every edge is 
incident to precisely four tiles), respectively. This Delaney 
symbol is listed as no. 8 in Table 1. 

Proof. (Sketch.) Let (~,F) be an equivariant three- 
dimensional tiling with Delaney symbol ~;m).  
Choose {i,j,k,l}={O,1,2,3}. Let R be an /-di- 
mensional constituent of ~ ,  with /-center z. Let ~z 
denote the set of all chambers with/-center z. Note 
that ~¢z must be an {i,j,k} component in v. Hence, the 
F-equivalence class-~z: ~ {FC[CE~z} gives rise to 
an {i,j,k} subsymbol of ~ ;m) ,  which corresponds 
precisely to the F-equivalence class of R in the 
tiling. 1--] 

The following result is crucial for all further com- 
putations: 

Lemma 1.3. Let ( J ,F)  be an equivariant three- 
dimensional tiling with Delaney symbol (2;m). 
Choose i,j, k, l with {i,j,k,l} = {0,1,2,3} and i < j  < k. 
Every {i,j,k} subsymbol ~ ';m') of ~ ; m )  must have 
strictly positive curvature 

~i~';,,,'): = E {[1/mo(D)] + [1/mik(D)] 
D E ~ '  

+ [ 1~rusk(D)] - 1}. 

Proof. (Sketch.) Let (~,F) be an equivariant three- 
dimensional tiling with Delaney symbol ~;m).  Con- 
sider any /-center z in the corresponding chamber 
system ~. Let ~= denote the set of all chambers 
incident to z and let Fz < F denote the stabilizer 
group of z. One can view the system (~z,Fz) as a 
two-dimensional equivariant tiling, by considering 
the l faces of the chambers in ~= to be two- 
dimensional tiles. This tiling must be spherical. This 
implies positive curvature by the Euler theorem, as 
observed by Dress (1987, p. 210). I-7 

2. The finiteness theorem 

In this section, we prove that the number of classes 
of face-transitive (indeed, more generally, face-k- 
transitive) three-dimensional tilings is finite. 

Lemma 2.1. Let (~,~)  be a finite connected 
Delaney graph. There are only finitely many possible 
choices for the functions mg: ~ ---,H (0 -< i < j  -< 3) 
such that (_~ ;m) is a Delaney symbol correspond- 
ing to an equivariant three-dimensional tiling 
( ~  F)  of [~3. 

Proof. Let (_~;m) beta  Delaney symbol. Define 
r/j(D): =nfin{r~Nl(sisj)(D)= D} for all D E 2  and 
0 -< i < j  < 3. By definition, ru(D ) <- # ~  and to(D) 
divides mo(D ) so we can define the branching-number 
function vu(D): = mo(D)/ro(D ) for all D ~ and 0 __- 
i < j  _< 3. From (DS1) and (DS2), it follows that the 
functions m o. and r 0 are constant on the {i,j} com- 
ponents and, hence, v U is also. It is sufficient to prove 
that the branching-number function can assume only 
finitely many values. It is not difficult to see that, for 
any {i,j} component r ,  the value of v0(~): = vo(D), 
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with D ~ ,  is always equal to the order of some 
rotation appearing in the group F. Choose {i,j,k,l} = 
{0,1,2,3}. Consider some specific edge e of a chamber 
C ~ that joins, say, a k center and an l center. Now 
consider the set of all chambers 'ee that are incident 
to the edge e. (Consider, for example, Fig. 4, with 
k = 2 and l = 3.) With C E D ~ 3 ,  there are precisely 
2mu(D ) chambers in ~e, partitioned into ru(D ) or 
2ru(D ) different F-equivalence classes, depending 
on whether the stabilizer group Fe < F is a dihedral 
group or a cyclic group. In both cases, the rotational 
order of the stabilizer group Fe of the edge e must 
equal vv(D). So, the lemma is proved because the 
well known crystallographic restriction states that the 
only rotational orders that can appear in a crystallo- 
graphic space group are 1, 2, 3, 4 and 6. [-] 

The proof of the following result does not make 
use of properties of Euclidean space, so it is also true 
for Delaney symbols encoding tilings of, say, the 
hyperbolic space [~3. It uses a variant of an argument 
already used in a similar context by Dress & 
Scharlau (1984) (see also Dress & Huson, 1991). 

Lemma 2.2. Let (2 ;m) be the Delaney symbol of 
some equivariant three-dimensional tiling. If the 
number of {0,1,3} components in _~ is k, then 

# ~  < 24k. 

Proof. Assume the number of {0,1,3} components 
is less than or equal to k. From (DS3), it follows that 
s3 commutes with So and sl. Hence, s3 induces a 
permutation of order at most two on the set of {0,1} 
components in .~ and, therefore, the number r of 
{0,1} components in 2 cannot exceed 2k. From 
lemma 1.3, it follows, with m02(D)=2 for all 
D ~ 2 ,  that 

Z {[1/mo,(D)] + [1/ml2(D)] -- (1/2)} > 0 
D E , "  

for all {0,1,2} components r C ~ .  Therefore, 

Z {[1/mo~(D)] + [1/m~2(O)] - (1/2)} > 0. 
D E ~  

The latter equation, together with m,z(D) -- 3 for all 
D U_~, leads to 

0 < Z [1~tool(D)] + Z [l/mlz(D)] - Z 1/2 
D E g "  D E v  D E v  

_< 2r + (1/3) #_~ - (1/2) # ~  = 2r - (1/6) # y  

and, thus, 
#_~/6 < 2r or #_~ < 12r _ 24k 

if we simply observe [see Dress & Scharlau (1984) or 
Dress & Huson (1987) for details] that 

Z [1/mo~(D)]= ~ E [1/mo,(D)] 
D E g "  e" D E , "  

= ~ [ # # / m o l ( D E c " ) ] <  ~ 2 =  2r, 
f e" 

where we sum over all {0,1} components c .  I--] 

The result, together with lemma 2.1, implies 

Theorem 2.3. For any k ~ ~, the number of equi- 
variant types of face-k-transitive three-dimensional 
tilings is finite. 

3. Computation of feasible three-dimensional Delaney 
symbols 

In this section, we first discuss how to obtain a list of  
candidate Delaney symbols that contains, by con- 
struction, all Delaney symbols of equivariant face- 
transitive three-dimensional tilings (up to isomor- 
phism). This list is generated by first computing the 
possible {0,1,2} subgraphs and functions m01 and m,2 
and then adding the edges of color 3 and defining the 
function m23. We then go on to indicate how to 
single out precisely those Delaney symbols that do 
indeed correspond to face-transitive three-dimen- 
sional tilings [For more traditional d-dimensional 
algorithms, see Molnfir (1992) and Molnf.r & Prok 
(1993).] 

Let (:/;m) be a Delaney symbol corresponding to 
some face-transitive tiling (F,F). Lemma 1.2 implies 
that _~ consists of exactly one {0,1,3} component. 
From this, together with the fact that s3 commutes 
with both So and s,, it follows that the number No, of 
{0,1} components in _~ is at most two and that s3 
defines a {0,1} isomorphism on the one or between the 
two component(s). Note that the number N0,2 of 
{0,1,2} components cannot exceed No,, trivially. 
Hence, there are three possible cases: 

One. N01 = 1 and No12 = 1. In this case, the {0,1,2} 
subsymbol of (~, ;m) is the two-dimensional Delaney 
symbol of an equivariant topological polyhedron, 
whose faces are all equivalent with respect to the 
stabilizer group of the polyhedron. Following Dress 
(1987), all such two-dimensional Delaney symbols 
can easily be generated by computer (see Huson, 
1993) (cf. also Grfinbaum & Shephard, 1981 a). 

Two. No, = 2 and No12 = 2. In this case, both 
{0,1,2} subsymbols are two-dimensional Delaney 
symbols of topological polyhedra as described in 
(one), 

Double. No, = 2 and N0,2 = 1. In this case, the 
{0,1,2} subsymbol is the two-dimensional Delaney 
symbol of an equivariant topological polyhedron 
that possesses precisely two equivalence classes of 
faces (with respect to the stabilizer group of the 
polyhedron), all faces having the same number of 
edges. All such two-dimensional Delaney symbols 
can also be generated easily by computer (see Dress, 
1987; Huson, 1993). 

Now, in all three cases, proceed as follows. 
Assume that, as described above, we are given a 
three-colored graph (9", e ), with # u  < 24, consisting 
of one or two {0,1,2} components, together with 
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appropriate functions m01, ml2, m02. Successively 
generate and consider all possible definitions of edges 
of color 3 on 2 .  For each 'promising' definition, 
define m23:2--~H in all feasible ways, making sure 
that the resulting four-colored graph is connected 
and that properties (DS1)-(DS4) hold. 

The fact that only branching numbers 1, 2, 3, 4 
and 6 can occur ensures that, for any given definition 
of the edges of color 3, only a small number of 
possible choices of m 2 3  have to be considered. 
Furthermore, one must only consider such defi- 
nitions of m23 that lead to positive curvature of each 
{1,2,3} component, reflecting the fact that the stabi- 
lizer groups of the vertices of the corresponding 
tiling are (finite) crystallographic point groups. 

Using computer programs ONE, TWO and 
DOUBLE, based on the above remarks, we obtain 
the following result: 

Lemma 3.1. In each of the cases One, Two and 
Double, there exist at most 171,183 and 185 Delaney 
symbols, respectively, that might possibly correspond 
to Euclidean face-transitive three-dimensional tilings. 

Given such a list of candidates, one can proceed as 
follows. As indicated in the proof of lemma 2.1, the 
branching numbers of a Delaney symbol always 
correspond to rotational orders in the symmetry 
group of the corresponding tiling. Indeed, each 
{i,j,k} subsymbol determines, up to equivalence, the 
induced stabilizer group of the corresponding vertex, 
edge, face or tile [see Dress & Scharlau (1984) or 
Moln/tr (1991) for details]. Using a computer pro- 
gram STAB-GRO UPS based on this, for each of the 
candidate Delaney symbols, we can compute all 
equivalence classes of stabilizer groups in the symme- 
try group of the corresponding tiling. Note that any 
nontrivial stabilizer group Fp leaves either exactly 
one point, or one line, or one plane in E 3 point-wise 
fixed. We need to distinguish between the first type 
of group, which we will refer to as a strict point 
group, and the latter two. 

Let (~ ;m) be one of the candidate Delaney sym- 
bols. A necessary condition for the existence of a 
corresponding equivariant tiling is that there must 
exist some crystallographic space group (see Hahn, 
1983) containing precisely the same combination of 
equivalence classes of strict stabilizer point groups as 
computed for (~¢;m). Furthermore, the other two 
types of stabilizer groups must be compatible with 
the rotational axes and reflectional planes of the 
space group. In general, there may exist more than 
one feasible group. 

Let us call an equivariant tiling (7 ,F)  orientable 
if its symmetry group F onsists of orientation- 
preserving isometries only, i.e. of isometries whose 
linear components have determinant 1. We call a 
Delaney symbol (~;m) orientable if its Delaney 

graph is bipartite in the usual sense, i.e. if there exists 
an orientation map to: 9 - - , { - 1 , +  1} such that 
to[si(O)] = - to(D) for all O ~ 2 and i E {0,1,2,3}. 

Assume that (2 ;m) encodes an equivariant tiling 
(T,F). It can be shown that (2  ;m) is orientable if 
and only if (7 ,F)  is orientable. Let ( I , F )  be a 
nonorientable equivariant tiling with Delaney 
symbol (2;m). The following construction yields the 
Delaney symbol (2 ';m'), called the oriented covering 
of (D;m), corresponding to the tiling ( ~ F ' )  that one 
obtains from ( .~F) by removing all orientation- 
reversing isometries in F. Set 2 ': = D x { - 1, + 1} 
and define s , (D,e):=(siD,-e)  for all D E 2 ,  
e ~ { -  1, + 1} and i~{0,1,2,3}. Set m'ij[(O,e)]: = 
mij(D) for all D ~ 2 ,  e ~  { -  1, + 1} and 0 -< i < j  --- 3. 

Let (~ ;m) be a Delaney symbol and assume that 
(~;  m) is not orientable. If (2 ;m) encodes an equiva- 
riant tiling of Euclidean space, then so, too, must its 
oriented covering (2 ' ;m'). Hence, in the attempt to 
exclude nonrealizable Delaney symbols, we can focus 
our investigations on orientable Delaney symbols. 

For any given orientable three-dimensional 
Delaney symbol (2 ;m) of an orientable equivariant 
tiling, one can compute the so-called symmetry skele- 
ton of the tiling. This is the graph whose labeled 
vertices correspond to the nonequivalent strict stabi- 
lizer point groups and whose labeled edges corre- 
spond to the nonequivalent sections of rotational 
axes. An edge is incident to a vertex in the graph if 
and only if the corresponding rotational axis is inci- 
dent to the point stabilized by the group correspond- 
ing to the vertex (see Figs. 6 and 7). It can be shown 
that any two (orientable) tilings with symmetry 
groups of the same crystallographic type give rise to 
symmetry skeletons that are isomorphic as labeled 
graphs (but not vice versa). Hence, given an orienta- 
ble three-dimensional Delaney symbol (~;m), we 
need to determine whether the corresponding sym- 
metry skeleton is compatible with one of the 219 
isomorphism types of crystallographic space groups. 
The symmetry skeleton associated with a given type 

Fig. 6. A fundamental region of the tiling (/- ,F) dicussed in Figs. 
1-5 is indicated by heavy lines. The tiling has two F classes of 
strict point stabilizer groups of type 432 and two of type 422, 
indicated by labeled circles. Furthermore, the tiling has three F 
classes of twofold rotational axes, two of fourfold axes and one 
of threefold axes, indicated by labeled lines. 
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of crystallographic space group can either be 
determined from the information given by Hahn 
(1983) or, more easily, from the Delaney symbol of a 
tiling known to exist for the given space-group type. 
Furthermore, Dunbar (1988) lists the (embedded) 
symmetry skeletons of all crystallographic groups 
whose 'orbit spaces' are homeomorphic to the three- 
dimensional sphere or projective space. 

Determination of which of the 219 crystallo- 
graphic space groups contain a given combination of 
stabilizer groups was initially quite a laborious pro- 
cess worked out by Molnfir, greatly aided by a 
systematic collection based on the work of Henry & 
Lonsdale (1979). Recently, Huson has developed a 
computer program SPACE-GRO UP PREDICTOR, 
which automatically performs this task and also 
computes the symmetry skeleton corresponding to 
the given Delaney symbol. 

Initially, Molnfir carefully inspected all candidate 
Delaney symbols by hand and concluded that, of 
these, precisely 88 yield realizable tilings. Later, the 
data were re-examined in the following way. First, 
using the program SPACE-GROUP PREDICTOR, 
we determined that, of those symbols, precisely 169 
imply stabilizer groups compatible with one or more 
of the crystallographic space groups. Second, by 
computer, we determined that precisely 165 of them 
are minimal. The number of Delaney symbols that 
are both minimal and also pass the SPACE-GROUP 
PREDICTOR test is exactly 12. After careful inspec- 
tion of these 12 Delaney symbols, we conclude that 
precisely seven are realizable. The other five each 
give rise to a non-Euclidean tiling and, hence, cannot 
be the symbol of some tiling of Euclidean space (see 
Tables 1 to 4). 

Although we are certain that it is sufficient to 
consider only the minimal Delaney symbols in this 
investigation, we cannot prove this fact at present. 
Therefore, the initial inspection of all candidate 
Delaney symbols by Moln/tr played an important 
role. 

Fig. 7. The symmetry skeleton associated with the tiling (~,F) 
and, thus, with the crystallographic group type 207.P432. The 
vertices represent the different F-equivalence classes of the point 
stabilizers of the group and the edges represent the 
F-equivalence classes of sections of rotational axes. 

From these considerations, we finally obtain the 
main result: 

Theorem 3.2. There exist precisely 88 classes of 
face-transitive three-dimensional tilings. These fall 
into seven topological families. Of the 88 types, 
precisely 12 can only be realized using 'marked' tiles, 
five others possess only convex realizations, a further 
six have both convex and nonconvex realizations 
whereas the other 65 can only be realized using 
nonconvex tiles. 

This analysis is closely connected to the classifi- 
cation of orbifolds, i.e. of topological spaces that 
'locally look like' the orbit space of a symmetry 
group (see Thurston, 1980; Scott, 1983). The 
Delaney symbol of an equivariant tiling is, in fact, a 
sort of triangulation, induced by the tiling, of the 
orbifold associated with the symmetry group of the 
tiling. A deeper understanding of this connection 
between orbifolds, Delaney symbols and tilings will 
be the aim of future investigations. We hope that this 
will prove useful for a detailed - and in particular 
computationally oriented - study of both concepts. 

4. Results and examples 

There exist precisely seven topological families of 
face-transitive three-dimensional tilings. The types of 
tiles involved are: the cube, the tetrahedron, the 
rhombic dodecahedron, the octahedron, the special 
rhombohedron, the covered rhombohedron and, for 
the seventh type of tiling, the octahedron and the 
tetrahedron. These are all well known tiles except, 
perhaps, the special rhombohedron (see Fig. 8) and 
the covered rhombohedron (see Fig. 9 and example 3 
below). 

In Table 1, we list the 88 Delaney symbols that 
correspond to the classes of equivariant face- 
transitive three-dimensional tilings. Then, in Table 2, 
for each Delaney symbol we indicate the topological 
family of the tiling, the stabilizer groups and the 
crystallographic space group. Furthermore, we 
indicate whether the Delaney symbol gives rise to a 
'marked', convex or nonconvex type of three- 
dimensional tiling. 

In Tables 3 and 4, we list the five Delaney symbols 
whose symmetry skeletons are compatible with some 
crystallographic group, but which do not give rise to 
face-transitive tilings of Euclidean space. 

Finally, in Fig. 11, we indicate which Delaney 
symbol is homomorphic to which, i.e. which tiling 
can be derived from which other tiling by symmetry 
breaking. 

Example 1. Let (_~ ;m) be the Delaney symbol no. 
1 in Table 1. As we will now show, it encodes the 
familiar cube tiling (~,F).  From ~ = {D}, mo~(D)= 
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Table 1. The 88 nonisomorphic Delaney symbols corresponding to face-transitive three-dimensional tilings 

D e l a n e y  s y m b o l s  n o s .  1 - 4 0 ,  41--69 a n d  7 0 - 8 8  c o r r e s p o n d  t o  t h e  c a s e s  O n e ,  T w o  a n d  D o u b l e ,  r e s p e c t i v e l y .  O t h e r  t h a n  t h a t ,  t h e r e  is n o  

s p e c i a l  o r d e r i n g .  T o  s a v e  s p a c e ,  t h e  s y m b o l s  h a v e  b e e n  e n c o d e d .  E a c h  l i ne  d e f i n e s  o n e  D e l a n e y  s y m b o l .  C o n s i d e r ,  f o r  e x a m p l e ,  l i n e  28:  

28 D = 6 : 2 4 6 , 6 3 5 , 2 6 5 , 2 6 5 m =  3 , 4 4 , 4 3 3 .  

T h e  f i rs t  n u m b e r  f o l l o w i n g  ' D  = '  i n d i c a t e s  t h e  n u m b e r  o f  v e r t i c e s  o f  t h e  D e l a n e y  g r a p h .  I n  th i s  case ,  w e  h a v e _ ~  = { 1 ,2 ,  3 . . . . .  6}. T h e  

s u b s e q u e n t  g r o u p  o f  n u m b e r s ,  2 4 6 ,  d e f i n e s  t h e  0 e d g e s  in  a s c e n d i n g  o r d e r :  s 0 ( 1 ) =  2, S o ( 3 ) =  4 a n d  S o ( 5 ) =  6. T h e  s e c o n d  g r o u p  o f  

n u m b e r s ,  6 3 5 ,  d e f i n e s  t h e  1 e d g e s :  s~(1) = 6, s~(2) = 3 a n d  s~(4) = 5. S i m i l a r l y ,  t h e  o t h e r  t w o  g r o u p s  o f  n u m b e r s  d e f i n e  t h e  2 a n d  3 e d g e s .  

F o l l o w i n g  ' m  = ' ,  w e  l is t  t h e  v a l u e s  o f  t h e  f u n c t i o n s  m01, m~2 a n d  t h e n  m23, o n  e a c h  { i , j }  c o m p o n e n t ,  in  a s c e n d i n g  o r d e r  o f  t h e  

c o m p o n e n t s .  I n  t h e  e x a m p l e ,  mo~ = 3 o n  t h e  o n l y  {0,1} c o m p o n e n t ,  m~2 = 4 o n  b o t h  {1,2} c o m p o n e n t s  in  ~ a n d  m23 = 4 o n  t h e  f i r s t  a n d  

3 o n  t h e  o t h e r  t w o  {2,3} c o m p o n e n t s .  I n  t h e  l a t t e r  case ,  m23(1) = m23(2) = 4 a n d  m23(3) = . . .  = m23(6) = 3. 

No .  De laney  symbol  

5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 

23 
24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 
4O 
41 
42 
43 
44 
45 
46 
47 
48 
49 
5O 

51 

52 
53 

54 

55 

56 

57 

58 

D = 1 : l , l , l ,  l m =  4 , 3 , 4  
D = 2 : 1 2 , 2 , 2 , 1 2 m  = 4 , 3 , 4  
D = 2 : 1 2 ,  2, 2 , 2 m  = 4 , 3 , 4  
D = 2 : 2 ,  1 2 , 1 2 ,  1 2 m  = 4 , 3 4 , 3 3  
D = 2 :  2, 12, 12, 1 2 m  = 4 , 3 3 , 4 4  
D = 2 : 2 , 1 2 , 1 2 , 2 m  = 4 , 3 3 , 4  
D = 2 : 2 , 2 , 2 , 1 2 m  = 4 , 3 , 4  
D = 2 : 2 , 2 , 2 , 2 m  = 4 , 3 , 4  
D = 3 :  l 3 , 2 3 , 1 2 3 ,  1 2 3 m  = 3 , 4 4 , 4 3 3  
D = 3 : 1 3 , 2 3 ,  13, 1 2 3 m  = 3 , 3 , 4 6  
D = 4 : 2 4 , 1 3 4 , 1 2 3 4 , 1 2 3 4 m  = 4, 3 4 3 , 3 3 3 3  
D = 4 : 2 4 ,  1 3 4 , 1 2 4 , 1 2 3 4 m  = 4 , 3 3 , 4 4 4  
D = 4 :  2 4 , 1 3 4 ,  1 2 4 , 1 2 3 4 m  = 4 , 3 3 , 3 3 6  
D = 4 : 2 4 , 1 3 4 , 1 2 4 , 4 3 m  = 4 , 3 3 , 4  
D = 4 : 2 4 , 1 3 4 , 4 3 , 4 3 m  = 4 , 4 3 , 3 3  
D = 4 : 2 4 , 4 3 , 4 3 , 1 2 3 4 m  = 4 , 3 3 , 4 4  
D = 4 :  2 4 , 4 3 , 4 3 , 2 4 m  "= 4 , 3 3 , 4  
D = 4 : 2 4 , 4 3 , 4 3 , 3 4 m  = 4 , 3 3 , 4  
D = 4 : 2 4 , 4 3 , 4 3 , 4 3 m  = 4 , 3 4 , 3 3  
D = 4 : 2 4 , 4 3 , 4 3 , 4 3 m  = 4 , 3 3 , 4 4  
D = 6 : 2 4 6 , 6 3 5 , 1 2 3 4 5 6 , 1 2 3 4 5 6  

m = 3 , 4 4 4 , 4 4 3 3 3 3  
D = 6 : 2 4 6 , 6 3 5 ,  1 2 3 4 6 ,  1 2 3 4 5 6  

m = 3 , 4 4 , 3 3 3 3 4  
D = 6 : 2 4 6 , 6 3 5 , 1 2 6 5 , 2 6 5 m  = 3 , 4 4 , 4 3 3  
D = 6 : 2 4 6 , 6 3 5 , 2 4 6 , 1 2 3 4 5 6 m  = 3 , 3 , 6 6 4  
D = 6 : 2 4 6 , 6 3 5 , 2 4 6 , 2 6 5 m  = 3 , 3 , 4 6  
D = 6 : 2 4 6 , 6 3 5 , 2 5 6 , 1 2 3 4 5 6 m  = 3 , 3 , 4 6 6  
D = 6 : 2 4 6 , 6 3 5 , 2 5 6 , 2 6 5 m  = 3 , 3 , 4 6  
D = 6 : 2 4 6 , 6 3 5 , 2 6 5 , 2 6 5 m  = 3 , 4 4 , 4 3 3  
D = 8 : 2 4 6 8 , 8 3 5 7 , 2 4 8 7 ,  1 2 3 4 5 6 7 8  

m = 4 , 3 3 , 4 4 4 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 2 4 8 7 , 4 3 8 7 m  = 4 , 3 3 , 6 3 3  
D = 8 : 2 4 6 8 , 8 3 5 7 , 2 4 8 7 , 4 3 8 7 m  = 4 , 3 3 , 4 4 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 2 4 8 7 , 5 6 7 8 m  = 4 , 3 3 , 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 2 4 8 7 , 8 7 6 5 m  = 4 , 3 3 , 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 3 4 8 7 , 1 2 3 4 5 6 7 8  

m = 4 , 3 3 , 4 4 4 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 3 4 8 7 , 2 8 7 6 m  = 4 , 3 3 , 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 3 4 8 7 , 4 3 8 7 m  = 4 , 3 3 , 6 3 3  
D = 8 : 2 4 6 8 , 8 3 5 7 , 3 4 8 7 , 4 3 8 7 m  = 4 , 3 3 , 4 4 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 3 4 8 7 , 5 6 7 8 m  = 4 , 3 3 , 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 3 4 8 7 , 8 7 6 5 m  = 4 , 3 3 , 4  
D = 8 : 2 4 6 8 , 8 3 5 7 , 4 3 8 7 , 4 3 8 7 m  = 4 , 4 3 3 , 3 3 3 3  
D = 2 :  l 2, 12, l 2 , 2 m  = 4 4 , 3 3 , 4  
D = 2 : 1 2 , 1 2 , 1 2 , 2 m  = 3 3 , 4 3 , 4  
D = 4 : 1 2 3 4 , 2 4 , 2 4 , 3 4 m  = 4 4 , 3 3 , 4  
D = 4 : 2 4 , 1 2 3 4 , 1 2 3 4 , 3 4 m  = 4 4 , 3 3 3 3 , 4 4  
D = 4 : 2 4 , 2 4 , 1 2 4 , 3 4 m  = 3 3 , 4 3 , 4  
D = 4 : 2 4 , 2 4 , 2 4 , 3 4 m  = 4 4 , 3 3 , 4  
D = 4 : 2 4 , 2 4 , 2 4 , 3 4 m  = 3 3 , 4 3 , 4  
D = 6 : !  3 4 6 , 2 3 5 6 ,  1 2 3 4 6 , 4 5 6 m  = 3 3 , 4 4 3 , 4 4  
D = 6 :  1 3 4 6 , 2 3 5 6 , 1 3 4 6 , 4 5 6 m  = 3 3 , 3 3 , 4 6  
D = 8 : 2 4 6 8 , 1 3 4 5 7 8 , 1 2 4 5 6 8 , 5 6 7 8  

m = 4 4 , 3 3 3 3 , 4 4 4  
D = 8 : 2 4 6 8 , 1 3 4 5 7 8 , 1 2 4 5 6 8 , 8 7 6 5  

m = 4 4 , 3 3 3 3 , 4 4  
D = 8 : 2 4 6 8 , 4 3 8 7 , 4 3 8 7 , 5 6 7 8 m  = 4 4 , 3 3 3 3 , 4 4  
D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = . 3 3 , 4 4 4 3 , 4 4  
D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 4 4 4 3 , 4 4  
D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 4 4 3 , 4 4 4  
D = 1 2 ; 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 ,  

9 1 0 1 1 1 2 7 8 m  = 3 3 , 4 4 3 , 4 4 4  
D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 4 4 3 , 4 4  
D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 4 4 3 , 4 4  

2 3 4 5 6 8 1 0 1 2 ,  
4 

2 3 4 5 6 8 1 1 1 2 ,  
4 

2 3 4 6 8 1 0 1 2 ,  

2 3 4 6 8 1 1 1 2 ,  

2 6 5 8 1 0 1 2 ,  

2 6 5 8 1 1 1 2 ,  

No .  De laney  symbol  
59 D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 4 6 8 1 0 1 2 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 3 3 , 6 6 4  
60 D =  1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 4 6 8 1 2 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 3 4 4 , 4 4  
61 D = 1 2 ; 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 5 6 8 1 1 1 2  , 

7 8 9 1 0 1 1 1 2 m  = 3 3 , 3 3 , 4 6 6  
62 D =  1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 5 6 8 1 2 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = 33,  3 4 4 , 4 4  
63 D = 1 6 : 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  

2 4 8 7 1 0 1 2 1 6 1 5 , 9 1 0 t l  1 2 1 3 1 4 1 5 1 6  
m = 4 4 , 3 3 3 3 , 4 4 4 4  

64 D = 1 6 : 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
2 4 8 7 1 0 1 2 1 6 1 5 , 1 3 1 4 1 5 1 6 9 1 0 1 1 1 2  
m = 4 4 , 3 3 3 3 , 4 4  

65 D = 1 6 ; 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
2 4 8 7 1 1 1 2 1 6 1 5 , 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
m = 4 4 , 3 3 3 3 , 4 4 4  

66 D - -  1 6 ; 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
2 4 8 7 1 1 1 2 1 6 1 5 , 1 3 1 4 1 5 1 6 9 1 0 1 1 1 2  
m = 4 4 , 3 3 3 3 , 4 4  

67 D = 1 6 : 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
3 4 8 7 1 1 1 2 1 6 1 5 , 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
m = 4 4 , 3 3 3 3 , 4 4 4 4  

68 D = 1 6 ; 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
3 4 8 7 1 1 1 2 1 6 1 5 ,  I 0 9 1 6 1 5 1 4 1 3 1 2 1 1  
m = 4 4 , 3 3 3 3 , 4 4  

69 D =  1 6 ; 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
3 4 8 7 1 1 1 2 1 6 1 5 ,  1 3 1 4 1 5 1 6 9 1 0 1 1 1 2  
m = 4 4 , 3 3 3 3 , 4 4  

70 D = 8 : 2 4 6 8 ,  1 3 4 5 7 8 ,  1 2 5 6 7 8 , 5 6 7 8  
m = 4 4 , 3 3 3 . 3 , 4 4  

71 D = 8 : 2 4 6 8 ,  1 3 4 5 7 8 ,  1 2 5 6 7 8 , 8 7 6 5  
m ~ 4 4 , 3 3 3 3 , 4 4 4  

72 D = 6 :  1 3 4 6 , 2 3 5 6 ,  1 5 6 4 , 4 5 6 m  = 3 3 , 4 4 ,  4 3 3  
73 D = 6 ; 1 3 4 6 , 2 3 5 6 , 1 6 5 4 , 4 5 6 m =  3 3 , 3 3 ,  46  
74 D = 6 ;  1 3 4 6 , 2 3 5 6 , 4 5 6 , 4 5 6 m  = 3 3 , 4 4 ,  4 3 3  
75 D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 1 2 7 8 9 1 0 1 1 1 2 ,  

1 1 1 2 7 8 9 1 0 m  = 3 3 , 4 4 4 , 4 4 3 3 3 3  
76 D =  1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 7 8 9 1 0 1 2 ,  

I 1 1 2 7 8 9 1 0 m  = 3 3 , 4 4 , 4 . 3 3 3 3  
77 D =  1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 7 8 1 1 1 2 1 0 ,  

9 1 0 1 1 1 2 7 8 m  = 3 3 , 3 3 , 4 6 6  
78 D =  1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 7 8 1 1 1 2 1 0 ,  

1 0 9 8 7 1 2 1 1 m  = 3 3 , 3 3 , 6 6 4  
79 D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 7 8 1 1 1 2 1 0 ,  

1 0 9 8 7 1 2 1 1 m  = 3 3 , 3 3 , 4 6 6  
80 D = 1 2 ; 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 3 4 7 8 1 2 1 1 ,  

8 7 1 2 1 1 1 0 9 m  = 3 3 , 5 3 , 3 3  
81 D =  1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 7 8 9 1 0 1 1 1 2 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 4 4 4 , 4 4 3 3 3 3  
82 D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 7 8 9 1 0 1 2 1 1 ,  

7 8 9 1 0 1 1 1 2 m  = 3 3 , 4 4 , 3 3 3 3 4  
83 D = 1 6 : 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  

4 3 9 1 0 1 4 1 3 1 5 1 6 , 1 2 1 1  I 0 9 1 6 1 5 1 4 1 3  
m = 4 4 , 4 3 3 , 3 3 3 3  

84 D =  1 6 ; 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
4 3 9 1 0 1 5 1 6 1 4 1 3 , 1 0 9 1 6 1 5 1 4 1 3 1 2 1 1  
m = 4 4 , 3 3 3 3 , 4 4  

85 D = 1 6 : 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
4 3 9 1 0 1 5 1 6 1 4 1 3 , 1 1 1 2 1 3 1 4 1 5 1 6 9 1 0  
m = 4 4 , 3 3 3 3 , 4 4 4 4  

86 D = 1 6 : 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
4 3 9 1 0 1 5 1 6 1 4 1 3 , 1 2 1 1 1 0 9 1 6 1 5 1 4 1 3  
m = 4 4 , 3 3 3 3 , 4 4  

87 D =  1 6 : 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
4 3 9  l 0 1 5 1 6 1 4 1 3 ,  141312 I 1 1 0 9 1 6 1 5  
m =  4 4 , 3 3 3 3 , 4 4 4 4  

88 D =  1 6 ; 2 4 6 8 1 0 1 2 1 4 1 6 , 8 3 5 7 1 6 1 1 1 3 1 5 ,  
4 3 9 1 0 1 5 1 6 1 4 1 3 , 1 5 1 6 9 1 0 1 1 1 2 1 3 1 4  
m = 4 4 , 3 3 3 3 , 4 4  
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T a b l e  2. Space groups, stabilizer groups, topological families and types of realizations for the 88 face-transitive 
three-dimensional tilings (~-, F) corresponding to the Delaney symbols in Table 1 

The crystallographic space group F is given in column (1). For notation, see Hahn (1983, p. 103). The stabilizer groups for the F classes 
of the tiles (3), faces (2), edges (1) and vertices (0) of ~ are listed in column (2). For notation, see Hahn (1983, p. 776). In column (3), we 
note to which of the seven topological families the tiling belongs. Asterisks indicate tilings that are the maximal representatives of their 
topological families. Finally, in column (4), the letters 'c'  'n' and 'm' indicate whether the corresponding type of tiling possesses convex, 
nonconvex or only 'marked' realizations. 

No.  (1) (2) (3) t  (4) 
1 221.Proem (3) m~m (2) 4/mmm (1) 4/mmm cube* c 

(0) ra~m 
2 200.Pm~ (3) m~ (2) mmm (1) mmm (0) m]  cube m 
3 226.Fm~c (3) m~ (2) ;~2m (1) 4/m (0) 432 cube n 
4 225.Fm~m (3) m~m (2) mmm (1) 3m rhomb, c 

(0,) 7~3rn (02) m]rn dodec.* 
5 225.Fm]m (3) ~13m (2) mmm (1) 4mm cube m 

(0,) m]m (02) m~rn 
6 215.P213ra (3) ~13rn (2) 212m (1) ~2m (0) ~3m cube n 
7 226.Fm~c (3) 432 (2) 4/m (1) ~I2m (0) m] cube m 
8 207.P432 (3) 432 (2) 422 (1) 422 (0) 432 cube n 
9 221.Proem (3) 4/mmm (2) ram2 (1,) 4/mmm octa.* c 

(12) 3m (0,) m]m (02) m]m 
10 229.1m~m (3) ~12m (2) ram2 (1,) 4/mmm tetra.* c 

(12) ]m (0) mira 
11 216.FT~3m (3) ~3rn (2) rnm2 (1,) 3rn (12) 3m rhomb, m 

(0,) ~13m (02) 213m (03) 713m dodec. 
12 229.1m]m (3) ~m (2) ram2 (1~) 4mm (12) ~12m cube m 

(00 m~m (02) 4/mmm 
13 227.Fa'Jm (3) ]m (2) ram2 (1,) 3m (12) ~m spec. c 

(0,) ~I3m (02) ~13m rhomb.* 
14 166.R~m (3) ]m (2) 2/m (1) 2/m (0) ~m cube c,n 
15 202.Fm] (3) ~m (2) 2/m (1) 3 (0,) m] (0~) 23 rhomb, n 

dodec. 
16 202.Fm] (3) 23 (2) 2/m (1) ram2 (0,) m] cube m 

(02) m] 
17 195.P23 (3) 23 (2) 222 (1) 222 (0) 23 cube n 
18 219.F~13c (3) 23 (2) ~I (1) ~I (0) 23 cube n 
19 209.F432 (3) 432 (2) 222 (1) 3 (0,) 23 (02) 432 rhomb, n 

dodec. 
20 209.F432 (3) 23 (2) 222 (1) 4 (0,) 432 (02) 432 cube n 
21 225.Fm]m (3) mmm (2) m (1,) 4rnrn (12) 3m octa. m 

(12) 3m (0,) m]m (02) rn~m 
(03) ~3m 

22 215.PmT~3m (3) 212rn (2) m (1,) 3m (12) 3m octa. m 
(13) ~ 2m (0,) ~3m (02) ~I3m 

23 

24 

25 
26 
27 
28 

29 

3O 

31 

32 
33 
34 

35 
36 

37 

38 
39 
4O 

41 

42 

43 

44 

226.Fm~c 

224.Pn]m 

211.1432 
217.fiI3m 
222.Pn]n 
207.P432 

223.Pm~n 

210.F4,32 

211.1432 

167.R~c 
155.R32 
204.1rn~ 

206.1a~ 
203.Fa"J 

222.Pn~n 

148.R] 
167.R]c 
196.F23 

225.Fm~m 

225.Fm3m 

202.Fm~ 

216.F~I3m 

(3) 4/m (2) 2 (1,) ~12m (12) 3 octa. n 
(0~) m~ (02) 432 

(3) 222 (2) m (1,) ]rn (12) ]rn tetra, m 
(13) ~12m (0) ~13m 

(3) 222 (2) 2 (1,) 422 (12) 32 (0) 432 tetra, n 
(3) ~I (2) m (1,) ~2m (12) 3m (0) 213rn tetra, m 
(3) 2I (2) 2 (1,) 422 (12) ] (0) 432 tetra, n 
(3) 422 (2) 2 (1,) 422 (1,) 3 (0,) 432 octa. n 

(02) 432 
(3) 32 (2) m (!,) ~I2m (12) ~12m cube m 

(13) ram2 (0,) mmm (02) m] 
(3) 32 (2) 2 (1,) 32 (19 3 spec. n 

(12) 3(00 23 (02) 23 rhomb. 
(3) 32 (2) 2 (1,) 222 (12) 4 (0,) 422 cube n 

(02) 432 
(3) 32 (2) T (I) 2 (0) ~ cube n 
(3) 32 (2) 2 (1) 2 (0) 32 cube n 
(3) ] (2) m (1,) ram2 (12) ram2 cube m 

(0,) rnmm (02) rn~ 
(3) ~ (2) 2 (I) 2 (0) ~ cube n 
(3) ] (2) 2 (1,) ~ (12) 3 (0,) 23 (02) 23 spec. n 

rhomb. 
(3) ~ (2) 2 (1,) ~ (12) 4 (0,) 422 cube n 

(02) 432 
(3) ] (2) f 0 )  f (o) 3 cube n 
(3) ~ (2) 2 (1) "1" (0) 32 cttbe n 
(3) 23 (2) 2 (1,) 3 (12) 3 (0,) 23 rhomb, n 

(02) 23 (03) 23 dodec. 
(30 m]m (32) mira (2) 4mm cube-cube n 

(1) rnmm (0) ~13m 
(3,) m3m (32) 213rn (2) 3m (1) mmm octa.- c,n 

(0) m]m tetra.* 
(3,) m~ (32) m] (2) ram2 (1) 2/m cube--cube n 

(0) 23 
(3,) ~3m (32) ~13m (2) ram2 (1) ram2 cube-cube n 

(0,) 713m (02) ~I3m 

No.  (1) 
45 202.Fm~ 
46 209.F432 
47 209.F432 
48 139.14/mmm 

49 223.Pm]n 

50 224.Pn]m 

51 166.R~m 

52 196.F23 

53 69.Fmmrn 

54 136.P4~/mmm 

55 134.P4ffmmm 

56 121.17~2m 

57 128.P4/mnc 

58 87.14/m 

59 208.P4232 

60 97.I422 

61 218.P213n 

62 126.P4/nnc 

63 208.P4232 

64 155.R32 

65 228.Fd~c 

66 167.R]c 
67 201.Pn] 

68 205.Pal 
69 148.R] 
70 160.R3m 
71 217.1~I3m 

72 200.Prn~ 

73 204.1m] 
74 226.Fm~c 

75 202.Fm] 

76 195.P23 

77 197./23 
78 228.Fd'Jc 
79 201.Pn] 
80 205.Pa~ 

81 209.F432 

82 219.F~3c 

83 205.Pa3 

84 161 .R3c 
85 197./23 
86 205.Pa~ 
87 218.P213n 

88 146.R3 

I" Abreviations: rhomb, dodec., rhombic dodecahedron; octa., octahedron; tetra., 
cov. rhomb., covered rhombohedron. 

(2) (3)t (4) 
(3,) mg (32) 23 (2) 3 (1) 2/m (0) m] octa.-tetra, a 
(3,) 432 (32) 432 (2) 4 (1) 222 (0) 23 cube-cube n 
(30 432 (32) 23 (2) 3 (1) 222 (0) 432 octa.-tetra, n 
(30 4/mmm (32) ~12m (2) m octa.-tetra, c,n 

(1J mmm (12) 2/m (0) 4/mmm 
(3,) ~[2m (32) ~2m (2) m (1,) mmm tetra.-tetra, n 

(12) 32 (0) rn] 
(3,) ]m (32) ]m (2) m (11) ram2 cube~ube  n 

(12) 222 (OJ ~13m (02) g2m 
(3~) ~m (32) ~rn (2) m cube-cube n 

(1,) 2/m (12) 2/m (0) 3m 
(3,) 23 (32) 23 (2) 2 (1) 2 (0,) 23 cube--cube . 

(02) 23 
(3,) mmm (32) 222 (2) I (1,) 2/m octa.-tetra, c,n 

(12) 2/m (13) 2/m (0) mmm 
(3,) mmm (32) ~ (2) I (1,) 2/m octa.-tetra, n 

(12) m (0) mmm 
(3,) ~2rn (32) 222 (2) 1 (1,) 2/m octa.-tetra, n 

(12) 2/m (13) 222 (0) ~t2rn 
(30 712m (32) ~I (2) 1 (1,) m (12) 222 octa.-tetra, n 

(0) ~12rn 
(3,) 4/m (32) 222 (2) 1 (1,) 2 / r n  octa.-tetra, n 

(12) 2 (0) 4/m 
(30 4/m (32) ~I (2) 1 (1,) 2/m (12) "i" octa.-tetra, n 

(0) 4/m 
(30 222 (32) 222 (2) 1 (lj) 32 (12) 32 tetra.-tetra, n 

(13) 222 (0) 23 
(3,) 222 (32) 422 (2) 1 (!,) 222 (12) 2 octa.-tetra, n 

(0) 422 
(3,) ~ (32) ]l (2) 1 (ll) 222 (12) 3 tetra.-tetra, n 

(0) 23 
(3,) ~ (32) 422 (2) 1 (ll) 222 (12) "I octa.-tetra, n 

(0) 422 
(3,) 32 (32) 32 (2) 1 (10 222 (12) 222 cube--cube n 

(13) 2 (0,) 222 (02) 23 
(3,) 32 (32) 32 (2) 1 (1,) 2 412) 2 cube--cube n 

(0) 3 
(3,) 32 (32) ] (2) 1 (lj) 2 cube-cube n 

(12) 2 (0,) ~I (02) 23 
(3,) 32 (32)] (2) i (13 2 (12) i (0) 3 cube-cube n 
(30 ] (32) ] (2) I (1,) 2 (12) 2 (0,) 222 cube-cube n 

(02) 23 
(3,) ~ (32) ~ (2) 1 (1) 1 (0) 3 cube--cube c,n 
(3,) ~ (32) ] (2) I (1,) T (12) T (0) 3 cube-cube n 
(3) 3m (2) m (1) m (0) 3m cube n 
(3) 3m (2) m ( l J  ram2 (12) ~I cube n 

(0,) ~13m (02) ~12m 
(3) mmm (2) m (1,) mmm (12) 3 octa. n 

(0,) m ~ (02) m~ 
(3) mm2 (2) m (1,) mmm (12) ] (0) rn~ tetra, n 
(3) ~12m (2) m (1~) 4/m (12) 3 (00 432 octa. n 

(02) m~ 
(3) 2/m (2) 1 (1,) rnrn2 (12) 3 (13) 3 octa. n 

(00 rn] (02) rn] (03) 23 
(3) 222 (2) 1 (10 222 (12) 3 (13) 3 octa. n 

(02) 23 (0,) 23 
(3) 2 (2) 1 (1,) 222 (12) 3 (0) 23 tetra, n 
(3) 2 (2) 1 (1,) 32 (12) ~ (13) ~I (0) 23 tetra, n 
(3) 2 (2) 1 (1,) 222 (12) 3 (13) ~ (0) 23 tetra n 
(3) ] (2) 1 (I) 1 (0 ) ]  coy. c,n, 

rhomb.* 
(3) 222 (2) 1 (lz) 4 (12) 3 (13) 3 octa. n 

(0J 432 (02) 432 (03) 23 
(3) ~I (2) 1 (1,) 3 (12) 3 (13) ~I octa. n 

(0,) 23 (02) 23 
(3) ] (2) 1 (1,) 1 (12) 3 (0,) 3 (02) 3 rhomb, n 

dodec. 
(3) 3 (2) I (1) 1 (0) 3 cube n 
(3) 3 (2) 1 (1,) 2 (12) 2 (0,) 222 (02) 23 cube n 
(3) 3 (2) 1 (1) I (OJ ] (02) ] cube n 
(3) 3 (2) 1 ( l J  2 (12) 2I (13) ~t (0,) 222 cube n 

(02) 23 
(3) 3 (2) 1 (I) 1 (0) 3 cube n 

tetrahedron; spec. rhomb., special rhombohedron; 
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4, ml2(D)= 3 and m23(D)= 4, it follows that the 
corresponding tiling is generated by a characteristic 
simplex C with Coxeter diagram (see Coxeter & 
Moser, 1980): 

4 3 4 
( } ( }  ( 3  f }  

0 1 2 3. 

The group F is generated by reflections as the side 
planes of C (and thus the convex realization of the 
tiling is unique). This is because si(D) = D for all i 
{0,1,2,3}. So, in fact, F is a group of type 221. Pm3m 
(see Hahn, 1983). The comers of C are the centers of 
the '[3], [2], [1] and [0]' stabilizers listed in Table 4. 
From this tiling, where F = Aut (J ) ,  the other 42 
equivariant cubic tilings can be derived by symmetry 
breaking (see Fig. 10). A detailed study of the cubic 
case can be found in Moln/tr (1992). 

Choosing 4, 3, 3 or 4, 3, 5 for the values of mol(D), 
ml2(D) and mE3(D) leads to spherical or hyperbolic 
face-transitive tilings, respectively (see Coxeter, 1954, 
1956). 

I 

I I I 

Fig. 8. A special rhombohedron fitted into the cubic tiling. Four 
of  the vertices lie in cube centers and the other four lie on cube 
corners. The tiling can also be obtained from the tiling by 
rhombic dodecahedra by evenly splitting each rhombic 
dodecahedron into four special rhombohedra. 

Table 3. The five Delaney symbols whose symmetry 
skeletons are compatible with a crystallographic space 
group but which do not give rise to face-transitive 

tilings of Euclidean space 

Here we list all five Delaney symbols that are both minimal and 
imply a symmetry skeleton that is compatible with at least one 
crystallographic space-group type (listed after each symbol) but 
which we claim do not give rise to a periodic tiling of Euclidean 
space. The symbols are encoded as in Table 1. Note that nos. 90, 
91 and 92 all have the same Delaney graph and only differ in the 
values of the functions mg. In fact, all three symbols give rise to 
groups that are conjugate by isometries of the hyperbolic space ~3. 

No. Delaney symbol 

89 D = 6 : 2 4 6 , 6 3 5 , 2 6 5 , 4 3 6 m  = 3 ,43,3  
90 D = 1 0 : 2 4 6 8 1 0 , 1 0 3 5 7 9 , 2 6 5 1 0 9 , 6 5 4 1 0 9  

m = 5 , 3 3 3 , 6 4 4  
91 D =  1 0 : 2 4 6 8 1 0 , 1 0 3 5 7 9 , 2 6 5 1 0 9 , 6 5 4 1 0 9  

m = 5 , 3 3 4 , 6 3 3  
92 D =  1 0 : 2 4 6 8 1 0 , 1 0 3 5 7 9 , 2 6 5 1 0 9 , 8 7 6 5 1 0  

m =  5 , 3 3 4 , 6 3 3  
93 D = 1 2 : 2 4 6 8 1 0 1 2 , 6 3 5 1 2 9 1 1 , 2 7 8 1 1  1210, 

7891011 12m = 3 3 , 6 3 , 4 3 3  

Table 4. Stabilizer groups and Euclidean space groups 
for Delaney symbols in Table 3 

For each of  the five Delaney symbols in Table 3, we list the 
encoded stabilizer groups and all Euclidean space groups that have 
compatible symmetry skeletons. Furthermore, we indicate in 
which space the encoded tiling can actually be realized and, ir~ 
most cases, the name of the symmetry group. 

Realization 
Compatible space, 
Euclidean symmetry 

No. Stabilizer groups space groups group References 

89 (3) 32 (2) 2 (1) 2 212.P4~32, 
(0) 32 213.P4,32 

90 (3) 23 (2) 2 209.F432 
(1,) 222 (12) 4 
(01) 432 (02) 432 

91 (3) 432 (2) 2 209.F432 
(11) 222 (12) 3 
(01) 23 (02) 432 

92 (3) 432 (2) 2 209.F432 
(11) 222 (12) 3 
(01) 432 (02) 23 

93 (3) 222 (2) 1 197.I23 
(11) 2 (12) 3 
(0) 23 

$3, K32 Zhuk (1983) 

~3,F(q, 6), q=4 Molnfir (1993) 

•3, F(q, 6), q = 4 

N 3, F(q, 6), q = 4 

~3 Dunbar (1988, 
p.93) 

| 

,, 

B = C '  Q - ' ~ f  _ _ . . ~  ~ 

L 
I ! 

I I 

. . . . .  L _ _ ~  
• ~ C I ~ 

Fig. 9. A fundamental region F = ABCDQ of the tiling corre- 
sponding to symbol no. 80 in Table 1. The set F ' =  
A'B'C'D'Q" is a copy of F produced by a rotatory inversion of 
type 3 about the point D = D'. 

Example 2. Let (_~;m) be the Delaney symbol no. 
14 in Table 1. Consider Fig. 11. The four vertices D], 
D2, D3 and D4 of the Delaney graph give rise to four 
simplices D~, D2, D3 and D4, glued together as 
implied by the equations so(D1)= D2, sl(D2)= D3 

a n d  so(D3) = D4. 
The equations s](D])=D] and s I ( D 4 ) ' - D 4 ,  

together with Vo](D)= mo~(D)/rol(D)= 4/4 = 1 for D 
@~,  imply a plane reflection in the face f](D])t_J 

f l ( D 4 ) ,  wherefk(C) denotes the k face of the chamber 
C. The equations s2(D~)=D~ and s2(D2)=D2, 
together with v0z(D)= mo2(D)/ro2(D)= 2/2 = 1 for D 
E {D~,D2}, imply a plane reflection inf2(D0 UJ~(D2). 
The equation $2(D3) = D4 with Vo2(D) = mo2(D)/ro2(D) 
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= 2/1 -- 2 for D ~ {D3,D4} implies a half-turn around 
the axis e13(D2), where e/j(C) denotes the edge joining 
the i and j vertex of a chamber C. Similarly, the 

equations s3(D1)= D4 and $3(D2)= D 3 indicate a 
half-turn f3(O0 Uf3(O2)---~f3(D3) I,-Jf3(O4) about 
eo2(D2). The rotational order around the edge eoa(Dl) 

(a) 
Rhombic ~ dra Dodecahedra 

O c t a h e d r a - T e t r ~ 4  

(b) 

Special 
Rhombohedra 

Covered 
Rhombohedra 

® 

Fig. 10. The partially ordered set of (Delaney symbols of) face- 
transitive three-dimensional tilings corrsponding to the relation 
of symmetry breaking. A 'lower' tiling is obtained from a 
'higher' tiling by reduction of its symmetry group. 
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is v~2(D0 = m12(D1)/r12(Dl) = 3/1 = 3. For  the two 
equivalent  edges eo3(D2) and eo3(D4), this order is 
v12(D3) "- 3/3 = 1. 

These considerat ions lead us to a group of  type 
166. R 3 m  and a tiling ~ ,  which is topologically a 
cube tiling. As indicated by the letter R, the symme- 
try group possesses a rhombohedra l  lattice and thus 
a free stretching parameter .  A 'general '  convex 
rhombohedron  (i.e. one different f rom the cube and 
from the 'special rhombohedron '  depicted in Fig. 8, 
having six face angles of  120 ° and  six face angles of  
60 °) can be used to produce the tiling. A nonconvex 
realization is always possible by 'nicely'  bending the 
face par t  f3(Ol) I,-)f3(O2). 

Example  3. The most  interesting tiling ( ~ , F )  
found in this investigation is perhaps the one 
encoded by the Delaney symbol  (_~ ;m) listed as no. 
80 in Table  1. We call the tiles covered rhombohedra 
or triangle dodecahedra because the faces of  neigh- 
boring rhombs  part ly cross each other along 
c o m m o n  regular triangles (see Fig. 9). This tiling can 
be found in the work of  Gr f inbaum & Shephard 
(1980). The fundamenta l  domain  F =  A B C D Q  in this 

2 2 

0 

3 13 

(a) 

~." ~. . . . .  ~.." ~, 

',,, 

(b) 

Fig. 11. (a) The Delaney graph corresponding to symbol no. 14 in 
Table 1. The four circles D~, D2, D3 and D4 represent the 
vertices of the graph and each contains three numbers indicat- 
ing the values of m0~, m~2 and m23. Each line or curve labeled i 
represents an i edge (i ~ {0,1,2,3}). (b) Here, we depict the 
union of four chambers C~, C2, C3 and C4, corresponding to the 
four vertices of the Delaney graph. Small labeled circles indicate 
the 0, 1, 2 and 3 vertices of the four chambers. The four 
chambers make up a fundamental region (solid lines) for the 
corresponding tiling. Two dotted lines indicate half-turn axes. 

case consists of  12 simplices glued together, in the 
way the Delaney symbol  prescribes. The operat ion of  
s3 implies a rotatory inversion of  type 3 with fixed 
point  D = D ' ,  which produces the crossing image F '  
= A ' B ' C ' D ' .  The covered rhombohedron  has Q as 
its center with stabilizer of  type 3 and  of  order six. 
Hence, six images o f  F a round Q make  up the whole 
tile. The construct ion leads to a space group of  type 
205. Pa3. 

Note  added in proof'. Since this paper  was submit-  
ted, O la f  Delgado Friedrichs has developed com- 
puter  programs that  - by systematically breaking 
non-t ransla t ion symmetry  - established automa-  
tically that  the symbols  in Tables 3 and  4 do not 
have Euclidean realizations. 
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